Computers in Pharmaceutical Analysis
Automation of analytical techniques becomes a necessity both in research and pharmaceuticals manufacturing especially when a large number of analyses have to be carried out as rationally and reliably as possible. With the evolution of technology, there is a simultaneous increase in the levels of quality, safety, and reliability. Additionally, the revolution of the use of computers in pharmaceutical analysis provided by the development of flow analysis concepts and process analysis strategies offer a link between modern instrumentation and social or technological problems. Automation of computer in analysis as well as analytical methodology provides an opportunity to the pharmaceutical industry in its attempts to use risk management and try scientifically designed manufacturing processes. Such attempts often lead to a better understanding of the product and thereby promote quality assurance. With an aim to reduce the increasing costs for product development and to overcome the regulatory hurdles toward invention and creativity, the Federal regulatory agency of the USA, that is, FDA, is promoting automation, and computers are an integral part of achieving this objective. This chapter summarizes current state of automation and computer-aided analysis, computer-assisted analysis of drug delivery systems, different chromatographic data systems, use of computer-/software-assisted analytical method development, role of analytical QbD as well as its application in analytical process, and importance of nanoparticle tracking analysis.
This is a preview of subscription content, log in via an institution to check access.
Access this chapter
Subscribe and save
Springer+ Basic
€32.70 /Month
- Get 10 units per month
- Download Article/Chapter or eBook
- 1 Unit = 1 Article or 1 Chapter
- Cancel anytime
Buy Now
Price includes VAT (France)
eBook EUR 213.99 Price includes VAT (France)
Softcover Book EUR 263.74 Price includes VAT (France)
Hardcover Book EUR 263.74 Price includes VAT (France)
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Guide to Pharmaceutical Product Quality
Chapter © 2018
Improving Robustness of Pharmaceutical Dosage form Sample Preparation Using Experimental Design and Process Understanding Tools
Article 06 October 2020
Trends in Process Analytical Technology: Present State in Bioprocessing
Chapter © 2018
References
- Bruno A, Costantino G, Sartori L, Radi M (2019) The insilico drug discovery toolbox: applications in lead discovery and optimization. Curr Med Chem 26:3838–3873. https://doi.org/10.2174/0929867324666171107101035ArticleCASPubMedGoogle Scholar
- Maia EH, Assis LC, de Oliveira TA, da Silva AM (2020) Taranto AG Structure-based virtual screening: from classical to artificial intelligence. Front Chem 8:343. https://doi.org/10.3389/fchem.2019.00343ArticleCASPubMedPubMed CentralGoogle Scholar
- Ekins S, Wang B (2006) In: Ekins S (ed) Computer applications in pharmaceutical research and development. Wiley ChapterGoogle Scholar
- Rahman MM, Karim MR, Ahsan MQ, Khalipha ABR, Chowdhury MR, Saifuzzaman M (2012) Use of computer in drug design and drug discovery: a review. Int J Pharm Life Sci 1:1–21. https://doi.org/10.3329/ijpls.v1i2.12955ArticleCASGoogle Scholar
- Tang Y, Zhu W, Chen K, Jiang H (2006) New technologies in computer-aided drug design: toward target identification and new chemical entity discovery. Drug Disc Today Technol 3:307–313. https://doi.org/10.1016/j.ddtec.2006.09.004ArticleGoogle Scholar
- Geldenhuys WJ, Gaasch KE, Watson M, Allen DD, der Schyf CJV (2006) Optimizing the use of open-source software applications in drug discovery. Drug Disc Today 11:127–132. https://doi.org/10.1016/S1359-6446(05)03692-5ArticleCASGoogle Scholar
- Song CM, Lim SJ, Tong JC (2009) Recent advances in computer-aided drug design. Brief Bioinform 10:579–591. https://doi.org/10.1093/bib/bbp023ArticleCASPubMedGoogle Scholar
- Shah P, Mistry J, Reche PA, Gatherer D, Flower DR (2018) In silico design of Mycobacterium tuberculosis epitope ensemble vaccines. Mol Immunol 97:56–62. https://doi.org/10.1016/j.molimm.2018.03.007ArticleCASPubMedGoogle Scholar
- Mali AS, Jagtap M, Karekar P, Maruška A (2016) A brief review on process analytical technology (PAT). Int J Curr Pharm Res 8:10–15. https://doi.org/10.1016/j.molimm.2018.03.007ArticleCASGoogle Scholar
- Blundell TL (1996) Structure-based drug design. Nature 384:23–26. https://doi.org/10.1038/384023a0ArticleCASPubMedGoogle Scholar
- Zöldhegyi A, Rieger HJ, Molnár I, Fekhretdinova L (2018) Automated UHPLC separation of 10 pharmaceutical compounds using software-modeling. J Pharm Biomed Anal 156:379–388. https://doi.org/10.1016/j.jpba.2018.03.039ArticleCASPubMedGoogle Scholar
- Dick V, Sinz C, Mittlböck M, Kittler H, Tschandl P (2019) Accuracy of computer-aided diagnosis of melanoma: a meta-analysis. JAMA Dermatol 155:1291–1299. https://doi.org/10.1001/jamadermatol.2019.137ArticlePubMedPubMed CentralGoogle Scholar
- Bakan E, Bayraktutan Z, KilicBaygutalp N, Gul MA, Umudum FZ, Bakan N (2018) Evaluation of the analytical performances of Cobas 6500 and Sysmex UN series automated urinalysis systems with manual microscopic particle counting. Biochem Med 28:329–339. https://doi.org/10.11613/BM.2018.020712ArticleGoogle Scholar
- Perone SP (1971) Computer applications in the chemistry laboratory. Survey. Anal Chem 43:1288–1299. https://doi.org/10.1021/ac60304a036ArticleCASGoogle Scholar
- Podlogar BL, Muegge I, Brice LJ (2001) Computational methods to estimate drug development parameters. Curr Opin Drug Discov Devel 4:102–109. PMID: 11727315 CASPubMedGoogle Scholar
- Shelmerdine SC, Singh M, Norman W, Jones R, Sebire NJ, Arthurs OJ (2019) Automated data extraction and report analysis in computer-aided radiology audit: practice implications from post-mortem paediatric imaging. Clin Radiol 74:733e11–733e18. https://doi.org/10.1016/j.crad.2019.04.021ArticleGoogle Scholar
- Lee AC, Harris JL, Khanna KK, Hong JH (2019) A comprehensive review on current advances in peptide drug development and design. Int J Mol Sci 20:2383. https://doi.org/10.3390/ijms20102383ArticleCASPubMed CentralGoogle Scholar
- Engel KM, Grunewald S, Schiller J, Paasch U (2019) Automated semen analysis by SQA Vision® versus the manual approach—a prospective double-blind study. Andrologia 51:e13149. https://doi.org/10.1111/and.13149ArticleCASPubMedGoogle Scholar
- Bickerton GR, Paolini GV, Besnard J, Muresan S, Hopkins AL (2012) Quantifying the chemical beauty of drugs. Nat Chem 4:90–98. https://doi.org/10.1038/nchem.1243ArticleCASPubMedPubMed CentralGoogle Scholar
- Garofalo M, Grazioso G, Cavalli A, Sgrignani J (2020) How computational chemistry and drug delivery techniques can support the development of new anticancer drugs. Molecules 25:1756. https://doi.org/10.3390/molecules25071756ArticleCASPubMed CentralGoogle Scholar
- Yang X, Wang Y, Byrne R, Schneider G, Yang S (2019) Concepts of artificial intelligence for computer-assisted drug discovery. Chem Rev 119:10520–10594. https://doi.org/10.1021/acs.chemrev.8b00728ArticleCASPubMedGoogle Scholar
- Fekete S, Veuthey JL, Beck A, Guillarme D (2016) Hydrophobic interaction chromatography for the characterization of monoclonal antibodies and related products. J Pharm Biomed Anal 130:3–18. https://doi.org/10.1016/j.jpba.2016.04.004ArticleCASPubMedGoogle Scholar
- Pinzi L, Rastelli G (2019) Molecular docking: shifting paradigms in drug discovery. Int J Mol Sci 20:4331. https://doi.org/10.3390/ijms20184331ArticleCASPubMed CentralGoogle Scholar
- Gillings N, Todde S, Behe M, Decristoforo C, Elsinga P, Ferrari V et al (2020) EANM guideline on the validation of analytical methods for radiopharmaceuticals. EJNMMI Radiopharm Chem 5(1):7. https://doi.org/10.1186/s41181-019-0086-zArticlePubMedPubMed CentralGoogle Scholar
- Fekete S, Guillarme D (2012) Reversed-phase liquid chromatography for the analysis of therapeutic proteins and recombinant monoclonal antibodies. LCGC Europe 25:540–550. https://doi.org/10.1039/C6AN01520DArticleCASGoogle Scholar
- Graves PR, Haystead TA (2002) Molecular biologist’s guide to proteomics. Microbiol Mol Biol Rev 66:39–63. https://doi.org/10.1128/MMBR.66.1.39-63.2002ArticleCASPubMedPubMed CentralGoogle Scholar
- Ambrose J (2006) Radiologists who co-developed computer tomography and performed the first scan. Br Med J 332:977. https://doi.org/10.1016/j.jpba.2015.01.045ArticleCASGoogle Scholar
- Hindelang F, Zurbach R, Roggo Y (2015) Microcomputer tomography for medical device and pharmaceutical packaging analysis. J Pharm Biomed Anal 108:38–48. https://doi.org/10.1016/j.jpba.2015.01.045ArticleCASPubMedGoogle Scholar
- Stock SR (2012) Trends in the micro-and nano Computed Tomography 2010-2012. In: Developments in X-ray tomography VIII, vol 8506. Int Society Optics and Photonics, p 850602. https://doi.org/10.1117/12.930157
- Schambach SJ, Bag S, Schilling L (2010) Application of micro-CT in small animal imaging. Methods 50:2–13. https://doi.org/10.1016/j.ymeth.2009.08.007ArticleCASPubMedGoogle Scholar
- Baker DR, Mancini L, Polacci M (2012) An introduction to the application of X-ray microtomography to the three-dimensional study of igneous rocks. Lithos 148:262–276. https://doi.org/10.1016/j.lithos.2012.06.008ArticleCASGoogle Scholar
- Naik NN, Jupe AC, Stock SR, Wilkinson AP, Lee PL, Kurtis KE (2006) Sulfate attack monitored by microCT and EDXRD: influence of cement type, water-to-cement ratio, and aggregate. Cem Concr Res 36:144–159. https://doi.org/10.1016/j.cemconres.2005.06.004ArticleCASGoogle Scholar
- Salvo L, Cloetens P, Maire E, Zabler S, Blandin JJ, Buffiere J et al (2003) X-ray micro-tomography an attractive characterisation technique in materials science. Nucl Instrum Methods Phys Res B 200:273–286. https://doi.org/10.1016/S0168-583X(02)01689-0ArticleCASGoogle Scholar
- De Chiffre L, Carmignato S, Kruth JP, Schmitt R, Weckenmann A (2014) Industrial applications of computed tomography. CIRP Ann 63:655–677. https://doi.org/10.1016/j.cirp.2014.05.011ArticleGoogle Scholar
- Lee SH, Bajracharya R, Min JY, Han J, Park BJ, Han H (2020) Strategic approaches for colon targeted drug delivery: an overview of recent advancements. Pharmaceutics 12:68. https://doi.org/10.3390/pharmaceutics12010068ArticleCASPubMed CentralGoogle Scholar
- Acharya C, Coop A, Polli JE, MacKerell AD (2011) Recent advances in ligand-based drug design: relevance and utility of the conformationally sampled pharmacophore approach. Curr Comput Aided Drug Des 7(1):10–22. https://doi.org/10.2174/157340911793743547ArticleCASPubMedPubMed CentralGoogle Scholar
- Muehlwald S, Meyburg N, Rohn S, Buchner N (2020) Comparing a two-dimensional liquid chromatography with a quick, easy, cheap, effective, rugged, and safe protocol-based liquid chromatography method for matrix removal in pesticide analysis using time-of-flight mass spectrometry. J Chromatogr A 3:461153. https://doi.org/10.1016/j.chroma.2019.461153ArticleGoogle Scholar
- Davis JM, Giddings JC (1983) Statistical theory of component overlap in multicomponent chromatograms. Anal Chem 55:418–424. https://doi.org/10.1021/ac00254a003ArticleCASGoogle Scholar
- Tyrkkö E, Pelander A, Ojanperä I (2012) Prediction of liquid chromatographic retention for differentiation of structural isomers. Anal Chim Acta 720:142–148. https://doi.org/10.1016/j.aca.2012.01.024ArticleCASPubMedGoogle Scholar
- Goga-Remont S, Heinisch S, Rocca JL (2000) Use of optimization software to determine rugged analysis conditions in high-performance liquid chromatography. J Chromatogr A 868:13–29. https://doi.org/10.1016/S0021-9673(99)01203-0ArticleCASPubMedGoogle Scholar
- Wang X, Yang B, Sun H, Zhang A (2012) Pattern recognition approaches and computational systems tools for ultra-performance liquid chromatography–mass spectrometry-based comprehensive metabolomic profiling and pathways analysis of biological data sets. Anal Chem 84:428–439. https://doi.org/10.1021/ac202828rArticleCASPubMedGoogle Scholar
- Rogers CA, Ahearn JD, Bartlett MG (2020) Data integrity in the pharmaceutical industry: analysis of inspections and warning letters issued by the bioresearch monitoring program between fiscal years 2007–2018. Ther Innov Regul Sci:1–1. https://doi.org/10.1007/s43441-020-00129-z
- Khin NA, Francis G, Mulinde J, Grandinetti C, Skeete R, Yu B et al (2020) Data integrity in global clinical trials: discussions from joint US Food and Drug Administration and UK medicines and healthcare products regulatory agency good clinical practice workshop. Clin Pharmacol Ther 108:949–963. https://doi.org/10.1002/cpt.1794ArticlePubMedGoogle Scholar
- Shafiei N, De Montardy R, Rivera-Martinez E (2015) Data integrity—a study of current regulatory thinking and action. PDA J Pharm Sci Technol 69:762–770. https://doi.org/10.5731/pdajpst.2015.01082ArticlePubMedGoogle Scholar
- Steinwandter V, Herwig C (2019) Provable data integrity in the pharmaceutical industry based on version control systems and the blockchain. PDA J Pharm Sci Technol 73:373–390. https://doi.org/10.5731/pdajpst.2018.009407ArticlePubMedGoogle Scholar
- Achey TS, McEwen CL, Hamm MW (2019) Implementation of a workflow system with electronic verification for preparation of oral syringes. Am J Health Syst Pharm 76:S28–S33. https://doi.org/10.1093/ajhp/zxy019ArticlePubMedGoogle Scholar
- Spjuth O, Bongcam-Rudloff E, Hernández GC, Forer L, Giovacchini M, Guimera RV et al (2015) Experiences with workflows for automating data-intensive bioinformatics. Biol Direct 10:1–2. https://doi.org/10.1186/s13062-015-0071-8ArticleCASGoogle Scholar
- Velghe S, Deprez S, Stove CP (2019) Fully automated therapeutic drug monitoring of anti-epileptic drugs making use of dried blood spots. J Chromatogr A 1601:95–103. https://doi.org/10.1016/j.chroma.2019.06.022ArticleCASPubMedGoogle Scholar
- Tyteca E, Veuthey JL, Desmet G, Guillarme D, Fekete S (2016) Computer assisted liquid chromatographic method development for the separation of therapeutic proteins. Analyst 141:5488–5501. https://doi.org/10.1039/C6AN01520DArticleCASPubMedGoogle Scholar
- Shi Y, Xiang R, Horváth C, Wilkins JA (2004) The role of liquid chromatography in proteomics. J Chromatogr A 1053:27–36. https://doi.org/10.1016/j.chroma.2004.07.044ArticleCASPubMedGoogle Scholar
- Van Heukelem L, Thomas CS (2001) Computer-assisted high-performance liquid chromatography method development with applications to the isolation and analysis of phytoplankton pigments. J Chromatogr A 910:31–49. https://doi.org/10.1016/S0378-4347(00)00603-4ArticlePubMedGoogle Scholar
- Płotka J, Tobiszewski M, Sulej AM, Kupska M, Górecki T, Namieśnik J (2013) Green chromatography. J Chromatogr A 1307:1–19. https://doi.org/10.1016/j.chroma.2013.07.099ArticleCASPubMedGoogle Scholar
- Molnar I (2002) Computerized design of separation strategies by reversed-phase liquid chromatography: development of DryLab software. J Chromatogr A 965:175–194. https://doi.org/10.1016/S0021-9673(02)00731-8ArticleCASPubMedGoogle Scholar
- Torres-Lapasió JR, García-Álvarez-Coque MC (2006) Levels in the interpretive optimisation of selectivity in high-performance liquid chromatography: a magical mystery tour. J Chromatogr A 1120:308–321. https://doi.org/10.1016/j.chroma.2006.03.008ArticleCASPubMedGoogle Scholar
- Tyteca E, Liekens A, Clicq D, Fanigliulo A, Debrus B, Rudaz S et al (2012) Predictive elution window stretching and shifting as a generic search strategy for automated method development for liquid chromatography. Anal Chem 84:7823–7830. https://doi.org/10.1021/ac301331gArticleCASPubMedGoogle Scholar
- Peter GA, Warren BP, Dana Y. https://www.waters.com/nextgen/es/es/library/application-notes/2010/qbd-design-experiments-approach-development-of-chromatographic-method-for-separation-impurities-vancomycin.html. Accessed 23 Mar 2021
- Lawrence XY (2008) Pharmaceutical quality by design: product and process development, understanding, and control. Pharm Res 25:781–791. https://doi.org/10.1007/s11095-007-9511-1ArticleCASGoogle Scholar
- De Beer M, Lynen F, Chen K, Ferguson P, Hanna-Brown M, Sandra P (2010) Stationary-phase optimized selectivity liquid chromatography: development of a linear gradient prediction algorithm. Anal Chem 82:1733–1743. https://doi.org/10.1021/ac902287vArticleCASPubMedGoogle Scholar
- Wang X, Stoll DR, Schellinger AP, Carr PW (2006) Peak capacity optimization of peptide separations in reversed-phase gradient elution chromatography: fixed column format. Anal Chem 78:3406–3416. https://doi.org/10.1021/ac0600149ArticleCASPubMedPubMed CentralGoogle Scholar
- Parr MK, Schmidt AH (2018) Life cycle management of analytical methods. J Pharm Biomed Anal 147:506–517. https://doi.org/10.1016/j.jpba.2017.06.020ArticleCASPubMedGoogle Scholar
- de Sousa J, Holt D, Butterworth PA (2018) Analytical method design, development, and lifecycle management in pharmaceutical quality by design: a practical approach. In: Schlindwein WS, Gibson M (eds) Pharmaceutical quality by design: a practical approach, 1st edn. Wiley, New York, pp 257–279. https://doi.org/10.1002/9781118895238ChapterGoogle Scholar
- Vogt FG, Kord AS (2011) Development of quality-by-design analytical methods. J Pharm Sci 100:797–812. https://doi.org/10.1002/jps.22325ArticleCASPubMedGoogle Scholar
- Kochling J, Bridgewater J, Naji R (2010) Introducing a science-based quality by design concept to analytical methods development. In: Pharmaceutical stability testing to support global markets. Springer, New York, pp 169–179. https://doi.org/10.1007/978-1-4419-0889-6_22ChapterGoogle Scholar
- Mhatre R, Rathore AS (2009) Quality by design: an overview of the basic concepts. In: Rathore AS, Mhatre R (eds) Quality by design for biopharmaceuticals: principles and case studies, 1st edn. Wiley, New York, pp 1–7. https://doi.org/10.1002/9780470466315.ch1ChapterGoogle Scholar
- Peraman R, Bhadraya K, Padmanabha Reddy Y (2015) Analytical quality by design: a tool for regulatory flexibility and robust analytics. Int J Anal Chem:1–10. https://doi.org/10.1155/2015/868727
- International Conference on Harmonization of technical requirements for registration of pharmaceuticals for human use, ICH harmonized tripartite guideline, Draft Step 4. Pharmaceutical Development Q8(R1) (2008) https://database.ich.org/sites/default/files/Q8_R2_Guideline.pdf. Accessed 23 Mar 2021
- International Conference on harmonization of technical requirements for registration of pharmaceuticals for human use, ICH harmonized tripartite guideline. Pharmaceutical Development Q8(R2) (2009) https://database.ich.org/sites/default/files/Q8_R2_Guideline.pdf. Accessed 23 Mar 2021
- International Conference on harmonization of technical requirements for registration of pharmaceuticals for human use, ICH harmonized tripartite guideline. Quality Risk Management Q9 (2005) https://database.ich.org/sites/default/files/Q9_Guideline.pdf Accessed 23 Mar 2021
- International Conference on harmonization of technical requirements for registration of pharmaceuticals for human use, ICH harmonized tripartite guideline (2008) Pharmaceutical Quality System Q10. https://www.ema.europa.eu/en/documents/scientific-guideline/international-conference-harmonisation-technical-requirements-registration-pharmaceuticals-human_en.pdf Accessed 23 Mar 2021
- Mishra V, Thakur S, Patil A, Shukla A (2018) Quality by design (QbD) approaches in current pharmaceutical set-up. Expert Opin Drug Deliv 15:737–758. https://doi.org/10.1080/17425247.2018.1504768ArticleCASPubMedGoogle Scholar
- Sun M, Liu DQ, Kord AS (2010) A systematic method development strategy for determination of pharmaceutical genotoxic impurities. Org Process Res Dev 14:977–985. https://doi.org/10.1021/op100089pArticleCASGoogle Scholar
- Hanna-Brown M, Borman PJ, Bale S, Szucs R, Roberts J, Jones C (2010) Development of chromatographic methods in the era of quality by design for analytical methods. Sep Sci 2:12–19. https://doi.org/10.1016/j.jscs.2012.12.001ArticleCASGoogle Scholar
- Mallik R, Raman S, Liang X, Grobin AW, Choudhury D (2015) Development and validation of a rapid ultra-high performance liquid chromatography method for the assay of benzalkonium chloride using a quality-by-design approach. J Chromatogr A 1413:22–32. https://doi.org/10.1016/j.chroma.2015.08.010ArticleCASPubMedGoogle Scholar
- Gavin PF, Olsen BA (2008) A quality by design approach to impurity method development for atomoxetine hydrochloride (LY139603). J Pharm Biomed Anal 46:431–441. https://doi.org/10.1016/j.jpba.2007.10.037ArticleCASPubMedGoogle Scholar
- Li Y, Liu DQ, Yang S, Sudini R, McGuire MA, Bhanushali DS et al (2010) Analytical control of process impurities in Pazopanib hydrochloride by impurity fate mapping. J Pharm Biomed Anal 52:493–507. https://doi.org/10.1016/j.jpba.2010.01.043ArticleCASPubMedGoogle Scholar
- Tumpa A, Stajić A, Jančić-Stojanović B, Medenica M (2017) Quality by design in the development of hydrophilic interaction liquid chromatography method with gradient elution for the analysis of olanzapine. J Pharm Biomed Anal 134:18–26. https://doi.org/10.1016/j.jpba.2016.11.010ArticleCASPubMedGoogle Scholar
- Jameel F, Khan M (2009) Quality-by-design as applied to the development and manufacturing of a lyophilized protein product. Am Pharm Rev 12:20–24 CASGoogle Scholar
- Ye C, Terfloth G, Li Y, Kord A (2009) A systematic stability evaluation of analytical RP-HPLC columns. J Pharm Biomed Anal 50:426–431. https://doi.org/10.1016/j.jpba.2009.05.028ArticleCASPubMedGoogle Scholar
- Kormány R, Molnár I, Rieger HJ (2013) Exploring better column selectivity choices in ultra-high performance liquid chromatography using Quality by Design principles. J Pharm Biomed Anal 80:79–88. https://doi.org/10.1016/j.jpba.2013.02.028ArticleCASPubMedGoogle Scholar
- Liu DQ, Chen TK, McGuire MA, Kord AS (2009) Analytical control of genotoxic impurities in the pazopanib hydrochloride manufacturing process. J Pharm Biomed Anal 50:144–150. https://doi.org/10.1016/j.jpba.2009.04.002ArticleCASPubMedGoogle Scholar
- Monks KE, Rieger HJ, Molnár I (2011) Expanding the term “Design Space” in high performance liquid chromatography (I). J Pharm Biomed Anal 56:874–879. https://doi.org/10.1016/j.jpba.2011.04.015ArticleCASPubMedGoogle Scholar
- Aydar AY (2018) Utilization of response surface methodology in optimization of extraction of plant materials. Statistical approaches with emphasis on design of experiments applied to chemical processes, vol 7. pp 157–169. https://doi.org/10.5772/intechopen.73690
- Bezerra MA, Santelli RE, Oliveira EP, Villar LS, Escaleira LA (2008) Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta 76:965–977. https://doi.org/10.1016/j.talanta.2008.05.019ArticleCASPubMedGoogle Scholar
- Jamkhande PG, Ghante MH, Ajgunde BR (2017) Software based approaches for drug designing and development: a systematic review on commonly used software and its applications. Bull Fac Pharm Cairo Univ 55:203–210. https://doi.org/10.1016/j.bfopcu.2017.10.001ArticleGoogle Scholar
- Milanowski B, Hejduk A, Bawiec MA, Jakubowska E, Urbańska A, Wiśniewska A et al (2020) Biorelevant in vitro release testing and in vivo study of extended-release niacin hydrophilic matrix tablets. AAPS PharmSciTech 21:83. https://doi.org/10.1208/s12249-019-1600-zArticleCASPubMedGoogle Scholar
- Espíndola B, Bortolon FF, Pinto JM, Pezzini BR, Stulzer HK (2018) New approach for the application of USP apparatus 3 in dissolution tests: case studies of three antihypertensive immediate-release tablets. AAPS PharmSciTech 19:2866–2874. https://doi.org/10.1208/s12249-018-1086-0ArticleCASPubMedGoogle Scholar
- Li J, Li LB, Nessah N, Huang Y, Hidalgo C, Owen A et al (2019) Simultaneous analysis of dissolution and permeation profiles of nanosized and microsized formulations of indomethacin using the in vitro dissolution absorption system. J Pharm Sci 108:2334–2340. https://doi.org/10.1016/j.xphs.2019.01.032ArticleCASPubMedGoogle Scholar
- Feng X, Zidan A, Kamal NS, Xu X, Sun D, Walenga R et al (2020) Assessing drug release from manipulated abuse deterrent formulations. AAPS PharmSciTech 21:1–1. https://doi.org/10.1208/s12249-019-1595-5ArticleCASGoogle Scholar
- Costa P, Lobo JM (2001) Modeling and comparison of dissolution profiles. Eur J Pharm Sci 13:123–133. https://doi.org/10.1016/S0928-0987(01)00095-1ArticleCASPubMedGoogle Scholar
- Hofsäss MA, Dressman J (2020) Suitability of the z-factor for dissolution simulation of solid oral dosage forms: potential pitfalls and refinements. J Pharm Sci 109:2735–2745. https://doi.org/10.1016/j.xphs.2019.05.019ArticleCASPubMedGoogle Scholar
- Zuo J, Gao Y, Bou-Chacra N, Löbenberg R (2014) Evaluation of the DDSolver software applications. Biomed Res Int 2014:204925. https://doi.org/10.1155/2014/204925ArticlePubMedPubMed CentralGoogle Scholar
- Zhang Y, Huo M, Zhou J, Zou A, Li W, Yao C et al (2010) DDSolver: an add-in program for modeling and comparison of drug dissolution profiles. AAPS J 12:263–271. https://doi.org/10.1208/s12248-010-9185-1ArticleCASPubMedPubMed CentralGoogle Scholar
- Mendyk A, Jachowicz R, Fijorek K, Dorozynski P, Kulinowski P, Polak S (2012) KinetDS: an open source software for dissolution test data analysis. Dissolut Technol 19:6–11. https://doi.org/10.14227/DT190112P6ArticleGoogle Scholar
- Belew S, Suleman S, Duguma M, Teshome H, Wynendaele E, Duchateau L et al (2020) Development of a dissolution method for lumefantrine and artemether in immediate release fixed dose artemether/lumefantrine tablets. Malar J 19:1–2. https://doi.org/10.1186/s12936-020-03209-5ArticleCASGoogle Scholar
- Nair AB, Al-Dhubiab BE, Shah J, Jacob S, Saraiya V, Attimarad M et al (2020) Mucoadhesive buccal film of almotriptan improved therapeutic delivery in rabbit model. Saudi Pharm J 28:201–209. https://doi.org/10.1016/j.jsps.2019.11.022ArticleCASPubMedGoogle Scholar
- Guilherme VA, Ribeiro LN, Alcântara AC, Castro SR, da Silva GH, da Silva CG et al (2019) Improved efficacy of naproxen-loaded NLC for temporomandibular joint administration. Sci Rep 9:1–1. https://doi.org/10.1038/s41598-019-47486-wArticleCASGoogle Scholar
- Almukainzi M, Okumu A, Wei H, Löbenberg R (2015) Simulation of in vitro dissolution behavior using DDDPlus™. AAPS Pharm Sci Technol 16:217–221. https://doi.org/10.1208/s12249-014-0241-5ArticleCASGoogle Scholar
- Hole P, Sillence K, Hannell C, Maguire CM, Roesslein M, Suarez G et al (2013) Interlaboratory comparison of size measurements on nanoparticles using nanoparticle tracking analysis (NTA). J Nanopart Res 15:2101. https://doi.org/10.1007/s11051-013-2101-8ArticleCASPubMedPubMed CentralGoogle Scholar
- Probst C, Zeng Y, Zhu RR (2017) Characterization of protein particles in therapeutic formulations using imaging flow cytometry. J Pharm Sci 106:1952–1960. https://doi.org/10.1016/j.xphs.2017.04.034ArticleCASPubMedGoogle Scholar
- Panchal J, Kotarek J, Marszal E, Topp EM (2014) Analyzing subvisible particles in protein drug products: a comparison of dynamic light scattering (DLS) and resonant mass measurement (RMM). AAPS J 16:440–451. https://doi.org/10.1208/s12248-014-9579-6ArticleCASPubMedPubMed CentralGoogle Scholar
- Xin Y, Yin M, Zhao L, Meng F, Luo L (2017) Recent progress on nanoparticle-based drug delivery systems for cancer therapy. Cancer Biol Med 14:228–241. https://doi.org/10.20892/j.issn.2095-3941.2017.0052ArticleCASPubMedPubMed CentralGoogle Scholar
- Zhang Z, Zhuang L, Lin Y, Yan M, Lv J, Li X, Lin H, Zhu P, Lin Q, Xu Y (2020) Novel drug delivery system based on hollow mesoporous magnetic nanoparticles for head and neck cancers—targeted therapy in vitro and in vivo. Am J Cancer Res 10:350–364. PMID: 32064172 CASPubMedPubMed CentralGoogle Scholar
- Varenne F, Makky A, Gaucher-Delmas M, Violleau F, Vauthier C (2016) Multimodal dispersion of nanoparticles: a comprehensive evaluation of size distribution with 9 size measurement methods. Pharm Res 33:1220–1234. https://doi.org/10.1007/s11095-016-1867-7ArticleCASPubMedGoogle Scholar
- Filipe V, Hawe A, Jiskoot W (2010) Critical evaluation of Nanoparticle Tracking Analysis (NTA) by NanoSight for the measurement of nanoparticles and protein aggregates. Pharm Res 27:796–810. https://doi.org/10.1007/s11095-010-0073-2ArticleCASPubMedPubMed CentralGoogle Scholar
- Defante AP, Vreeland WN, Benkstein KD, Ripple DC (2018) Using image attributes to assure accurate particle size and count using nanoparticle tracking analysis. J Pharm Sci 107:1383–1391. https://doi.org/10.1016/j.xphs.2017.12.016ArticleCASPubMedGoogle Scholar
- Tian X, Nejadnik MR, Baunsgaard D (2016) A comprehensive evaluation of nanoparticle tracking analysis (NanoSight) for characterization of proteinaceous submicron particles. J Pharm Sci 05:3366–3375. https://doi.org/10.1016/j.xphs.2016.08.009ArticleCASGoogle Scholar
- Bai K, Barnett GV, Kar SR, Das TK (2017) Interference from proteins and surfactants on particle size distributions measured by nanoparticle tracking analysis (NTA). Pharm Res 34:800–808. https://doi.org/10.1007/s11095-017-2109-3ArticleCASPubMedGoogle Scholar
- Kousaka Y, Endo Y, Ichitsubo H, Alonso M (1996) Orientation-specific dynamic shape factors for doublets and triplets of spheres in the transition regime. Aerosol Sci Technol 24:36–44. https://doi.org/10.1080/02786829608965350ArticleCASGoogle Scholar
- Fung J, Manoharan VN (2013) Holographic measurements of anisotropic three-dimensional diffusion of colloidal clusters. Phys Rev E 88:020302. https://doi.org/10.1103/PhysRevE.88.020302ArticleCASGoogle Scholar
Author information
Authors and Affiliations
- Multidisciplinary Research Unit, Veer Chandra Singh Garhwali Government Institute of Medical Science and Research, Srinagar, India Mukesh Maithani
- Department of Pharmaceutics, University Institute of Pharmaceutical Sciences and Research, Baba Farid University of Health Sciences, Faridkot, Punjab, India Viney Chawla
- Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy, Moga, India Pooja A. Chawla
- Mukesh Maithani